液晶テレビの制作

1．目的

自ら物を作ることによって，物作りの難しさ・楽しさを経験することができる。また，今回の液晶テ レビの製作においては，過去の製作事例から，更なる高性能化を目指し，「大画面•高画質」「高音質」「多機能」を目標に以下の具体的内容を決め，回路の製作を行う。

- 7インチTFT液晶の採用で高輝度•高発色•大画面を実現する。
- ステレオ音声に対応し，外部スピーカ出カを付けることでより迫力ある音声を再現する。
- S映像も入力可能な外部映像入力に加え，プレイステーションなどのゲーム機を最高画質で楽し めるよう，RGB 映像入力を装備する。
－電源の ON／OFF，ボリユーム，入カセレクト，チャンネル切り替えを，本体だけでなくリモコンでも行 えるようにする。

2．液晶の原理

今回，液晶テレビを製作するに当たって，一番の特徴となる液晶ディスプレイには TFT方式の液晶を使用した。これは，過去の作品ではSTN方式の液晶を使用した物が多く，これは輝度•反応速度・コントラストにおいて満足できない物であるため。

3．回路の概略

今回の液晶テレビの製作に置いて，1で述べた機能を満たすためには，数多くの回路が必要とな る。そのため液晶ディスプレイと，それを制御する回路を別に分けることで，実用性 を追求した。こ れら制御する回路を液晶ディスプレイと分離した装置のことを，以下「コントロールボックス」と呼ぶ ことにする。

これは現在の主な家庭用プラズマディスプレイ・テレビでも採用している方法であり，ディスプレイ本体の設置場所における自由度向上，省スペース化が可能となる。

ここでは，そのコントロールボックスの概略を，図3—1に表し，説明することにする。

図3－1 コンロトールボックスの概略図
－まず，AC100V をDC12V とDC5V に変換し，それを一度電源コントロール回路に供給する。ここで は，リモコン及び本体前面パネルからの電源オン信号を受け取り，それによってスイッチングし，各回路に電源を供給する。
－映像•音声セレクタ回路では，チューナ・外部映像入カ・RGB 入力の映像及び音声の選択を行う。選択された映像信号はRGB デコ一ダ回路へ，音声信号は電子ボリューム回路へ行く。
－RGB デコーダ回路では Y／C 信号から RGB•複合同期信号を生成し，これを映像セレクト回路で RGB 切り替えを行った後，液晶ディスプレイに供給する。
－電子ボリユーム回路では，音声信号を8段階で音量調整し，レベルメータ回路でその出カ 値を示 すとともに，スピーカセレクト回路へ行く。
－スピーカセレクト回路では，液晶ディスプレイ本体に内蔵されているアンプと，外部スピーカ用アン プとのどちらかを選択する回路である。
•選局回路ではチューナを PIC マイコンでコントロールし，選局する。
－リモコンコントロール回路は，汎用リモコンから受けた信号を PIC マイコンでこれら各回路にパルス を送り，リモコンからの操作が可能となる。

- 前面操作パネルではプッシュスイッチで各操作が可能となる。
- 前面ディスプレイパネルは，選局状態を液晶で，入カセレクト状態•音量レベルなどを LED で，表示できるようにする。

4．各回路の説明

ここでは，3の概略図から，各回路の具体的な説明と，完成写真•回路図をもとに紹介していくこと にする。

また，回路図の規模が大きくなるため，1つの役割を果たす回路であるが回路図が 1 ページ内に収まらないものは，各部分ごとに分割し，A），B），C），のように表示し説明することにする。 なお，ここにある回路図では抵抗・コンデンサの単位が省略されている。また，12V SWed や5V SWed は電源コントロール回路によって，電源がオン時のみ供給される電圧，5V STBY はスタンバ イとして常時供給されている電圧のことである。また，回路図の接続状態として，ラインに対して ＂＞＂や＂＜＂となっているものは入力，＂｜＂となっているものは出力 ，＂＜＞＂となっているものは入 ／出力端子を表す。

今回ロジックIC を使うが，74HC シリーズの5V 系で動作するものが多い。その他の回路に40シリ ーズを5V で使うとオン抵抗が大きくなってしまい，それを避けるために 12V で使うとなるとレベルシ フトが必要になるため，回路が複雑になる。

そのため，アナログ・マルチプレクサの4051なども74HCシリーズを使うことでオン抵抗の大きさ や，レベルシフトを気にすることが無くなる。

また，回路図には加えていないが，誤動作を防ぐために各回路の電源入力部やCMOS－IC 付近に はコンデンサを入れる。

I．リモートコントロール・スイッチ回路（写真1）

i ．リモートコントロール回路

この回路には「 ELECTRONICS SHELVES 」（http：／／www．sikasenbey．or．jp／～enaga／index．html）で紹介されている PIC マイコン 16F84 を使った，8キー 記憶型の赤外線リモコン受信回路である。 これは，任意のリモコンから8つのキ一データを受け取り，記憶。 $16 f 84$ の8本のrbポートを ON／OFF することができる。動作モ一ドは，キ一を押している間のみ ON になるポートと，キ一を押す ごとに ON／OFF を反転するサイクリック動作の2つのモードがあり，MODE SW2が OFF 状態で押して いる間のみ ON：RB0～3・サイクリック出カ：RB4～7。ON状態で押している間のみ ON：RB0～5・サ イクリック出カ：RB6～7 となる。

今回は ON 状態で使用する。

ii．スイッチ回路

TC4027の JK フリップフロップ回路で，CP（3番•13番ピン）の立ち上がりエッジで Q がHになり， さらに CP に立ち上がりエッジを入れるとLになる。 $/ Q$ はその反転。（図4－1－2）
これを電源スイッチ及び表示 LED，外部／内部スピーカセレクト及び表示 LED に使う。電源 LED は2色入ったものを使い，電源切のときはスタンバイとして赤，電源入で緑の LED が点灯するように してある。

図4－1－1 リモートコントロール，スイッチ回路図

INPUTS					OUTPUTS		
S_{D}	C_{D}	CP	J	K	$\mathrm{O}_{\mathrm{n}+1}$	$\overline{\mathrm{O}}_{\mathrm{n}+1}$	
L	L	\boldsymbol{f}	L	L	no change		
L	L	\boldsymbol{f}	H	L	H	L	
L	L	\boldsymbol{f}	L	H	L	H	
L	L	\boldsymbol{f}	H	H	O_{n}	O_{n}	

図4－1－2 TC4O27の真理表

II．映像•音声セレクタ回路（写真 2 ）

A）．音声セレクト回路
この回路は，入力されたチューナ音声•外部映像入力音声•RGB 入力音声の中から1つだけを選択し，出力するものである。また，音声•映像セレクトにはICを用いるが，そのセレクト信号生成回路 も載せてある。（図 4－2－1）

i．セレクト信号生成回路

この回路は入カセレクト状態LEDの表示と，各セレクトICへのセレクト信号（L／H）を生成するもの である。
TC4017は10進デコーダで，14番CLK（CPO）の立ち上がりエッジで Q 0 から Q9 まで順次，Hと なる（図 4－2－A1）。これをセレクタのためのロー夘動作とするため，Q0 から Q2 までを使い，以降は リセットして Q2 の次は Q 0 に戻るようにした。

またCLKに，前面パネルスイッチからのH信号とリモコンからのH信号を入れようとしたところ，な ぜか上手く動作しなかったので，フォトカプラで絶縁したところ問題なく動作した。

ii．音声分配回路

チューナの音声信号がモノラルであるため，他の入カのステレオと対応させるために，モノラル音声信号を2つに分ける回路である。
NJM4558D はオペアンプで，単電源で動作させるためにはバイアスを付加する必要がある。
音声の分配は $10 \mathrm{~K} \Omega$ で行い，そのままでは信号が弱いので，それぞれオペアンプのバッフアを通 して出力される。

iii．音声選択回路

デュアル4チャンネル・アナログマルチプレクサの 74HC4052 で3つの音声入カから1つを選択す る。このIC も単電源で動作させる場合には入カにバイアスを付加し，同時に Vee とVss をアースに接続する必要がある。

選択にはTC4017からのH／L信号を使う。図4－2－A2に 74HC4052 の真理表を表す。

図4－2－A1 TC4017のタイミングチャート

INPUTS			CHANNEL ON
$\overline{\mathrm{E}}$	B	A	
L	L	L	X0，Y0
L	L	H	$\mathrm{X} 1, \mathrm{Y} 1$
L	H	L	X2，Y2
L	H	H	X3，Y3
H	X	X	none

図4－2－A2 74HC4052 の真理表

B）．映像セレクト回路
S映像入力に対応するためには，コンポジェット・ビデオ映像信号を Y／C 分離し，セレクトしなけれ ばならない。そのため，この回路では入力されるコンポジェット信号はコイルとコンデンサを使った Y／C 分離回路を通以，分離される。

i．ビデオバッファ及び Y／C 分離回路

チューナから出カされる映像信号は 75Ω ドライブできないために，トランジスタを使ったバッファ を通す必要がある。
バッファを通したコンポジェット・ビデオ信号は，コイルとコンデンサを用いた Y／C 分離回路で輝度信号と濃度信号に分離される。
外部映像入力からのコンポジェット・ビデオ信号も同様に Y／C 分離されるが，S映像入力端子も装備しているため，その後リレーで切り替えを行い，どちらか一方を出カする。リレーの切り替えはS映像端子の3－4番ピンのアースを検出して行う。同時に，前面表示パネルにS映像端子が接続された ときのみに，このアース検出で点灯するLED を備える。
リレーで切り替えられた Y／C 信号は後に紹介する液晶ディスプレイに映すと，若干ゲインオーバ ーとなるので，抵抗を入れて調節した。

ii．Y／C 映像選択回路

映像選択回路にはJRCのNJM2244Dを使用した。このICは5V動作可能な1回路3接点のビデオ スイッチで，クランプ回路•75 日ビデオドライバ回路内蔵で，外付け部品が少なくて済む。
このIC を2個使用して輝度•濃度信号を選択する。選択にはTC4017からのH／L信号を使う。（図 4－2－B2）
iii．RGB 映像選択回路
RGB入力に対応するため，外部からのRGB 映像信号及び複合同期信号と，内部のRGBコンバー タで生成された信号を選択する必要がある。
今回はその選択回路にIC でなく，リレーを使うことにした。これは回路の簡略化だけでなく，信号 の損失も抑えることができるからである。

図4－2－B1 映像セレクト回路図

SW 1	SW 2	出 力 信 号
L	L	$V_{\text {IN } 1}$
H	L	$V_{\text {IN } 2}$
L／H	H	$V_{\text {IN } 3}$

図4－2－B2 NJM2244D の真理表

写真1 リモートコントロール・スイツチ回路

写真2 映像•音声セレクト回路

III．電子ボリユーム回路（写真3－1）

i．電子ボリユーム回路

電子ボリユームを作るに当たって，今回はカウンタを使って，抵抗値を切り替えて音量を調整する方法を採った。
まずカウンタには 74HC192 の BCD－10進アップ・ダウンカウンタを使った。電源投入時にゼロを表示させるためにコンデンサと抵抗により，電源投入直後にクリア端子をH状態としてカウンタの初期化を行っている。このカウンタは0から9までカウントアップして次のパルスでOに戻るカウンタ だ が，74HC4051 では8チャンネル分しかないため，8カウント以降は0に戻さなければならない。

そこで，BCD－10 進デコ一ダの 74HC42 で8カウント目を74HC192 の CLEAR に接続した。また， 0 カウント目も CLEAR に接続し， 0 カウント時に DOWN を入カしても7に戻らないようにした。そうしな いと音量値O時にボリュームのマイナスを押すと，いきなり音量値が7になってしまうからである。

BCD－7セグ LED デコーダの 74LS247 で7セグ LED を駆動し，音量値を表示する。
74HC192 で生成された BCD コードのa，b，d部分を使用して，8チャンネル・マルチプレクサの 74HC4051 をコントロール。これで抵抗値を切り替えて，音量を8段階で調整する。また，74HC4051 の INH をHにすると出力が無くなる。そのためこれを音声ミュートとして使うことができる。音声ミュー トは用途の関係から，リモコンでのみ操作可能とした。
74HC4051 を単電源で使用するために，VssとVeeをGNDに接続し，入カにはバイアスを付加す る。また入カ・出力にはオペアンプを使ったバッファを入れる。

ii．前面パネルスイッチ用パルス発生回路

前面パネルに設けたボリュームコントロール用スイッチからHを送ると，チャッタリング防止対策を行っているのだが，カウンタが誤動作した。

そこで単安定マルチバイブレータのTC4538を使った。これは4番•13番ピンの立ち上がりエッジ である一定時間のパルス（H）を出力するものである。（図3－1－1）
外付け CR より，パルス幅を10u～10sに設定できる。また，この回路で生成されたHと，リモコンコ ントロールからのHをダイオードを使った OR回路だとなぜか誤動作が起きた。そこで急遽手元にあ ったノートPC 用ジャンクマザーボードから74LV32を取り出し，ポリウレタン皮膜線でピッチを広げ，基板に配線した。（写真3－2）

InPuts			OUTPUTS	
$\overline{\mathrm{R}}$	A	$\overline{\text { B }}$	Q	$\overline{\text { Q }}$
L	X	x	L	H
x	H	\times	L	H
\times	\times	L	L	H
H	L	\downarrow	Ω	U
H	\uparrow	H	Ω	U

図4－3－1 TC4538の真理表

図4－3－2 電子ボリユーム回路図

図4－3－3 74HC192のタイミングチャート

INPUTS				
channel				
INH	C	B	A	
L	L	L	L	X1
L	L	L	H	X2
L	L	H	L	X3
L	L	H	H	X4
L	H	L	L	X5
L	H	L	H	X6
L	H	H	L	X7
L	H	H	H	none
H	X	X	X	nnnnn

図4－3－4 74HC4051の真理表

写真3—1 電子ボリューム回路

写真3－2 TC4538と74LV32 の回路

IV．選局・レベルメータ回路（写真4）

A）．レベルメータ回路•30V生成回路
i．レベルメータ回路
現在の音量レベルの目安を示すことで，周囲の状況により変わる音量しベルを知ることができ，見た目にもカラフルとなる。

メータ表示には三洋の LB1412 という専用 IC を用いた。これは12個の LED によって入カレベル を表示するもので，8ポイント以降はピークホールド機能がある。ピークホールド・リセット時間は外付け CR により設定でき，13番に接続される抵抗とコンデンサで決定する。

12V でも動作するのだが，9V まで落とした方がメータの触れ方が良かったので，定電圧 IC を使用して電圧を下げた。
ii．30V生成回路
チューナの選局基準電圧となるもの。シュミットインバータの74HC14で作る発振回路と，ショット キーダイオードで3OVを生成する。発信周波数を $10 \mathrm{k} \Omega$ の半固定抵抗で出力電圧を調整する。

図4－4－A1 レベルメータ回路図

B）．選局回路

選局回路には，「電気電子エ作の部屋」（http：／／green．sakura．ne．jp／～cba／index．html）で紹介されて いる「自作CATVチューナーユニットの製作」を用いることにする。これはPICマイコンを使い，チュー ナの DATA•CLOCK•ENABLE を制御する。
選局状態の表示には2行16晰文字表示の SC1602BSLB を使用する。これにはバックライトが内蔵されてお以，TV 選択時のみにバックライトが点灯するようにした。

受信範囲はVHF1～12ch，UHF13～62ch，CATV13～63chで，Mカウンタ・Sカウンタ・BANDの数値を変えることによってチューニングし，それを最大 30 ch 分記憶することができる。

図4－4－B1 選局回路図

V．電源コントロール・スピ一カアンプ回路（写真5）

i．回路用電源切り替え回路
各回路に供給する5V と12V を入／切するもの。リモートコントロール・スイッチ回路からの信号（H） で ON になる。

12V はリレ—で切り替え，5V は C－MOS IC やマイコンに使うので，スイッチング時のノイズで誤動作する可能性もある。そのため FET で切り替えを行う。
ii．パワーアンプ回路
外部スピーカをドライブするための回路で，東芝のTA8220H を使用した。
BTL 接続で，Vcc＝13．2V4 Ω 負荷で片チャンネルあたり 19 W の出力がある。
iii．スイッチング電源
スイッチング電源の容量の関係から，コントロールボックス内の回路専用の電源と，液晶ディスプ レイ専用の電源とに分けた。大容量のスイッチング電源を1つ使う方法もあるが，ケース内部のス ペースが限られていることから，空間を利用して小型のスイッチング電源を2台重ねることにした 。 （写真6）
この電源からは 12 V と 5 V がそれぞれ 1 A 得られる。

図4－5－1 電源コントロール・スピーカアンプ回路図

写真4 選局・レベルメータ回路

写真5 電源コントロール・スピーカアンプ回路

VI．RGB デコーダ回路（写真7）

Y／C 信号からRGB 信号及び複合同期信号を生成する回路で，SONY のCXA1621Sを使用した。 $5 k \Omega$ と $10 \mathrm{k} \Omega$ の可変抵抗はそれぞれ，色の濃さ・色合いを調整する。

図4－6－1 RGB デコーダ回路図

写真6 スイッチング電源

写真7 RGB デコーダ回路

VII．前面操作•表示パネル回路（写真8）

コントロールボックス本体の前面に取り付け，状態表示や本体での各機能操作ができ るようにす るための回路。表示部分にはリモコンからの赤外線を受信するための素子も取り付けてあり，赤外線信号を受信するとRECEIVEランプが点灯する。

図4－7－1 前面操作•表示パネル回路図

VII．背面パネル（写真9）

コントロールボックス背面には，各入カ・出カ端子を備える。
RGB 映像入力には半固定抵抗を入れ，ゲインの調整を行う。
液晶ディスプレイとの接続には汎用 D－SUB9ピンコネクタを使用した。これはパソコンのシリアル端子と同じであるが，誤接続を防止するために，コントロールボックス背面の D－SUB 端子は凸型を用いた。

図4－8－1 背面パネル接続図

写真8 前面表示パネル

写真9 コントロールボックス背面

IX．液晶ディスプレイ（写真10）

液晶ディスプレイにはGain という店で購入したSHARP のLQ070T5BG01 を使用した。これはパチ ンコCR 機に使われているもので，購入時は透明なプラスチックのケースに入っていたが，画面を表示したときに色が映えるように黒色に塗装した。

パネルは7インチの TFT ワイド画面で，輝度•発色•応答性はSTN液晶とは比べ物にならないほ ど良い。入カ方式はRGB で水平走査 15 kHz の複合同期信号が必要となる。電源は 12 V の単一電源で動作する。パネルの周り・映像処理基板の裏にアルミ板があるが，これにはアースされてない。 この状態でも映像は出るが，蛍光灯インバータからのノイズを拾って画面上に縞模様のノイズが発生するためにアースに落としてある。
CN1 が各入力部となるのだが，このまま映像信号を入力するとゲインが足らない。そのため写真1 2のようにRGB 信号はR11～13の10Kをスル一させて接続する。黄色の円で囲ったのは半固定抵抗VR5で明るさ調整ができる。（写真11）

内部には内部スピーカ専用アンプとスピーカを入れた。

図4－9－1 液晶ディスプレイ内部図

写真10 塗装した液晶ディスプレイ（LQ070T5BG01）

写真11 液晶ディスプレイ接続箇所

X．PIC 書き込みに使用したもの（写真12）

今回，リモートコントロール回路と選局回路には PIC マイコン（16F84）を用いたが，その書き込み にはパソコンのシリアルポートを利用した自作 PIC ライターを使用した。 また，書き込みにはIC—PROGというフリーのソフトを使用した。

図4－10－1 PIC ライター回路図

なお，トランジスタ（BC547B）とダイオード（1N4148）はそれぞれ 2SC1815，1S1588 で代用可能。

写真12 使用した PIC ライター

4．完成品紹介

これらの回路を，穴開け・レタリング加エ を行ったケースに組み込み，実際に動作できるようにし た。

入カセレクトを＂TV＂にしてテレビ映像を受像している様子が写真13であり，TV 選択時には写真 14のように，チャンネル・M／Sカウンタ・BAND が液晶に表示される。また，写真15のように TV 以外の入カセレクト状態だと液晶のバックライトは消灯し，誤操作を防ぐことができる。写真15は外部映像入カセレクト（AUX）時で，S映像で入力。外部スピーカ出カに切り替え，リモコンで音量を＂5＂ に上げた瞬間の写真である。

コントロールボックスの前面にはリモコンが無くても操作ができるよう，各ボタンを備えた（写真1 6）。なお，内／外スピーカセレクトは本体でのみ操作ができる。

写真18はコントロールボックスの内部。各回路の基板は，ケースの内部面積から考えて，二段に重ねて空間を利用して取り付けることにする（写真17）。また，チューナパックの出っ張りがあるので， RGB デコーダの基板は削ってある。その基板には電子ボリューム基板に入りきらなかったTC4538 と74LV32 周辺の回路基板が垂直に取り付けてある。

液晶ディスプレイの両脇にはそれぞれスピーカが内蔵されている。 ロ径が小さいので音質は期待できないが，想像以上にステレオ感が得られる。

専用入力端子はパソコンのシリアル端子との誤認による回路破壊を防ぐため，凸型を採用してあ る（写真19）。

液晶の質が良いため非常に鮮明で，液晶のケースを黒色に塗装したため，一段と画が映える。 RGB 入カでプレイステーションの映像を映しても，コントラストが高く，外部スピーカに切り替えれば かなりの迫力が得られる。

写真13 完成品

写真14 チャンネル・M／Sカウンタ・BAND 表示用液晶

写真15 外部映像入力時の前面表示パネル

写真16 前面操作パネル

写真17 二段にされた基板

写真18 コントロールボックス内部

5．問題点とその解決

この製作に当たつて，幾つかの問題が起きた。
電子ボリューム回路では，当初考えていた前面操作パネルにあるスイッチからのHが，チャタリン グ防止対策をしているにも関わらず，ボリューム値が5以外に変更できないなどのトラブルがあった。 これはTC4538を使うことによって解決した。また，その回路からのHとリモコン回路からのHをダイ オードのOR回路で合わせてもトラブルが起きた。そのため，74LV32 を使って解決した。

映像•音声セレクト回路でも幾つかのトラブルが起きた。
映像セレクトには，当初デュアル4チャンネル・マルチプレクサの 74HC4052を使う予定だった（写真20）。ON 抵抗があるため入力には NJM2268を使ったバッファを付けた。
しかし，この回路を実際に使ってみると，電源投入から3分程度経過すると映像に黒い影が現れ始 め，10分も経過すると画面が真っ黒になってしまう。また，このIC に手を近づけても同様の症状が起きた。また，正常に動作しているときでも画質は決して良い物ではなく，ザワつい たノイズが乗っ ている状態だった。

そのため，ビデオバッファ・クランプ機能内蔵のNJM2244D にして解決したわけだが，後に 74HC4052 でのトラブルは，単にバイアスのかけ忘れだったようだ。

音声回路では，チューナの音声を L / R に分配する抵抗が，当初はゲインをとるために $1 \mathrm{k} \Omega$ を使 った。ところが，音声がダイオードで半波整流されたようになってしまい，しかも他の 入カセレクトで もこの音がリークしてしまい，音が混ざってしまった。

この原因を追及するのにまる2日掛かった。最終的に $10 k \Omega$ の抵抗で分配したところ，解決した。

電源コントロール回路では，初めは 12V のスイッチングに5V 動作•接点容量1A のリレーを使っ た。試験動作のときにはこれで問題なく動作していたが，実際に各回路をケースに組み込んで，一斉に動作させたとき，突入電流がリレーの容量範囲を超えたために接点が固着してしまい，常に導通状態になってしまった。想像以上の電流が流れていたようだ。

そのため，この部分のリレ—を接点容量の大きな物に取り替えたところ，解決した。

液晶ディスプレイでは，使用した専用ケーブルのシールド対策が万全でないためか，サワサワし たノイズが確認できた。とくにこれは RGB 入カで鮮明な映像を映すと顕著にみられる。これについ ては恐らくケーブルの問題で，別のものを探したのだが見つからず，断念した。

写真19 液晶ディスプレイの入カコネクタと内蔵スピーカ

写真20 74HC4052を使用し，試験動作中の映像•音声セレクタ回路

－リモコンの操作方法

リモートコントロール受信回路の PIC マイコンには，SONY 製テレビリモ コンのコードを記憶させてあるので，以下のコントロールは該当するボ タンが備えられていれば，どの機種のものでも可能である。

電源の入•切：
水色の枠で囲まれたボタン。これを押すことで，コントロール BOX 及び液晶ディスプレイの電源をON／OFF できる。

音量調整：

赤色の枠で囲まれたボタン。十ボタンを押すと音量が上がり，一ボタ ンを押すと音量が下がる。

チャンネル切り替え：
黄色の枠で囲まれたボタン。＋を押すとチャンネルが進み，一を押す と戻る。

入力切り替え：
紫色の枠で囲まれたボタン。これを押すことで順次，TV \rightarrow 外部映像入 カ \rightarrow RGB 映像入力 に切り替わる。

音声ミュート：
緑色で囲まれたボタン。これを押すことで音量をゼロに近い値にする ことができる。このとき，本体表示パネルの MUTE－LED が赤色に点灯 する。なお，この機能はリモコンでのみ可能。

6．製作においての結果

当初の目標は

- 7インチTFT液晶の採用で高輝度•高発色•大画面を実現する。
- ステレオ音声に対応し，外部スピーカ出カを付けることでより迫力ある音声を再現する。
- S映像も入力可能な外部映像入力に加え，プレイステーションなどのゲーム機を最高画質で楽し めるよう，RGB 映像入力を装備する。
－電源の ON／OFF，ボリユーム，入カセレクト，チャンネル切り替えを，本体だけでなくリモコンでも行 えるようにする。

であったが，ほぼ目標通りの結果が得られた。ただ，チューナの音声のステレオ化は，今回部品の入手が困難であったためにできなかった。

7．感想•後輩へのアドバイス

実はこれらの回路が，ケースに組み込んで正常に動作できるようになったのは，発表会の1日前 の日のことであった。各回路単体で動作が確認できても，それをケースに組み込んで一斉に動作さ せようとすると，思わぬトラブルが起きるのだ。
そのため，こういったトラブルを想定して，製作計画を立てて欲しい。

8．参考

リモートコントロール回路，プログラム：
http：／／www．sikasenbey．or．jp／～enaga／index．html
選局回路，プログラム：
http：／／green．sakura．ne．jp／～cba／index．html
PIC ライター：
http：／／cgi．biwa．ne．jp／～jr3roc／pic／

部品購入場所：

秋月電子，千石電商，若松通商，鈴商，ラジオデパート，日米通商，Gain Gain については，02年6月で閉店。

